
Chapter # Chapter # 55
Parsing Parsing MechanismsMechanisms
Chapter # Chapter # 55
Parsing Parsing MechanismsMechanisms

1

Parsing Parsing MechanismsMechanismsParsing Parsing MechanismsMechanisms

Dr. Dr. ShaukatShaukat AliAli

Department of Computer ScienceDepartment of Computer Science

University of PeshawarUniversity of Peshawar

Parser and Parsing

• Parser is that phase of compiler which takes
token string as input and with the help of existing
grammar, converts it into the corresponding parse
tree.
– Parser is also known as Syntax Analyzer.

2

• Parsing is a process that construct a syntactic
structure (i.e., parse tree) from the stream of
tokens
– Parsing is the process of determining if a string of

tokens can be generated by a grammar

Types of Parser

3

Types of Parser

• There are two types of parsers:
– Top Down Parser (LL Parser).

• Recursive Descent Parser.
• Predictive Parser.
• Non-Recursive Predictive Parser

– Bottom-Up Parser (LR Parser).
• Shift Reduce Parser

LL(1)

LR(1)

4

• Shift Reduce Parser
• Simple LR Parser.
• Canonical LR Parser.

• LL(1) means “L for left-to-right scanning of the input and L is
for left most derivation and only one non-terminal expanded at
each step.

• LR(1) means “L for left-to-right scanning of the input and R is
for right most derivation and only one non-terminal expanded at
each step.

LR(1)

Top-Down Parser

• Top-Down parsing can be viewed as an attempt to
find a left-most derivation for an input string.

• We can say that to construct a parse tree for the
input starting form the root and creating the nodes
of parse tree in preorder.

• It works as under:

5

• It works as under:
– Expand the start symbol of a grammar into the string

(on RHS of the start symbol).
– At each expansion step, the non terminal symbol in the

LHS of a particular production is replaced by the RHS
of that production.

– If the substitution is chosen correctly at each step, a
left most derivation is traced out.

Example.

• Consider the following grammar:

E E + E

E E * E

E (E)

E - (E)

6

E - (E)

E id

Now derive the string - (id + id).

Types of Top-Down Parsing.

• There are three types of Top-Down Parsers:

– Recursive Descent Parser.

– Predictive Parser.

– Non-Recursive Predictive Parser.

7

Recursive Descent Parser.

• In this type of Top-Down Parsing, a non-terminal
of the current derivation step is expanded using
the production rule in the given grammar.

• If the expansion does not gives the desired result,
the parser drops the current production and
applies another production corresponding to the
same non-terminal symbol.

8

same non-terminal symbol.
• This process is repeated until the required result is

obtained.
• The process of dropping the previous production

and applying a new production is called
BACKTRACKING.

Recursive Descent Parser.

• BackTracking occurs in Recursive Descent
Parsers
– Grammars that include multiple production for a

single non-terminal and not left factored

• Disadvantage:

9

• Disadvantage:
– The main disadvantage of this technique is that it is

slow because of backtracking.

– When a grammar with left recursive production is
given, then the parser might get into infinite loop.
Hence, left recursion must be eliminated.

Example 1

• Consider the grammar

S → rXd | rZd

X → oa | ea

Z → ai

• For an input string: read• For an input string: read

10

Example 2

• Consider the grammar:

S cAd

A ab | a

Now derive the string cad.

11

a

Predictive Parsing.

• It is a special case of Recursive Descent Parser.

• In this parsing method the backtracking is
removed.
– In many cases, by eliminating left recursion and left

factoring (common prefixes) form a grammar, we can
obtain a grammar that can be parsed by a Recursive

12

obtain a grammar that can be parsed by a Recursive
Descent Parser that needs no backtracking.

• This type of parsing technique works by
attempting to predict the appropriate production
to expand the non-terminal at the current
derivaiton step, in case more than one productions
corresponds to the same non-terminal.

Predictive Parsing.

• To construct a predictive parser, we must know:
– Given the current input symbol α and the non-terminal to be

expanded, which one of the alternatives of production A α1 |
α2 | α3 | ---- | αn is the unique alternative that derives a string
beginning with α.

– That is, the proper alternative must be detectable by looking at
only the first symbol it derives.

• For example , if we have the productions:

13

• For example , if we have the productions:
stmt if expr than stmt else stmt

| while expr than stmt
| begin stmt_list end

Then the keywords if, while, begin tell us which
alternative is the only one that could possibly succeed if
we are to find a statement.

Non-Recursive Predictive Parser.

• The key problem in the predictive parsing is that
of determining the production to be applied for a
non-terminal.

• The Non-Recursive Predictive Parser is the
implementation of Predictive Parser and solves
the problem by implementing an implicit stack

14

the problem by implementing an implicit stack
and parsing table.

• The Non-Recursive Predictive Parser looks up the
production to be applied in a parsing table.

• The parsing table can be constructed directly from
certain grammar.

Model of a Non-Recursive Predictive Parser.

15

Model of a Non-Recursive Predictive Parser.

• Input Buffer:
– The input buffer contains the string to be parsed

followed by $, a symbol used to indicate the end of the
input string.

• Stack:
– The stack contains a sequence of grammar symbols

16

– The stack contains a sequence of grammar symbols
(terminal and non-terminal) with # or $ indicating the
bottom of the stack.

• Parse Table:
– A two dimensional array M[A,a], where A is a non-

terminal and a is a terminal or the symbol $

Functions of Non-RPP

• Non-Recursive Predictive Parsing process may
include the following functions.

• Considering X, the symbol on top of the stack and
a the current input symbol.
– If X = a = $, the parser halts and announces successful

completion of parsing.

17

completion of parsing.

– POP:
• If X = a not equal to $, the parser pops X off the stack and

advances the input pointer to the next input symbol.

– Apply:
• If X is a non-terminal, then X will be popped from the stack.

• The parser consult M[X,a] of the parsing table M.

Functions of Non-RPP

• This entry will be either an X-production of the grammar or
an error entry.

• If, for example, M[X,a] = { X UVW}, the parser replaces
X on top of the stack by WVU (with U on top).

– Rejects:
• If M[A,a] = error, the parser calls an error recovery routine.

– Accepts:

18

– Accepts:
• If the current input is $.i.e. a = $ and top of the stack is $.i.e.

X = $, then parser will declare the validity of the input string
and give output as the structure of the parser.

FIRST and FOLLOW Sets

• The construction of a non-recursive predictive
parser is aided by two functions associated with a
grammar G

• These functions, FIRST and FOLLOW, allow us
to fill in the entries of a parsing table for G,to fill in the entries of a parsing table for G,
whenever possible

• We need to find FIRST and FOLLOW sets for a
given grammar, so that the parser can properly
apply the needed rule at the correct position

19

Why FIRST Set

• If the compiler would have come to know in
advance
– what is the “first character of the string produced when

a production rule is applied”, and comparing it to the
current character or token in the input string it sees

– It can wisely take decision on which production rule to
apply

20

If it knew that after reading character ‘c’ in the input
string and applying S->cAd, next character in the
input string is ‘a’

It would have ignored the production rule A->bc
(because ‘b’ is the first character of the string
produced by this production rule, not ‘a’)

Directly used the production rule A->a (because ‘a’ is
the first character of the string produced by this
production rule, and is same as the current character
of the input string which is also ‘a’).

S -> cAd
A -> bc|a

And the input
string is “cad”.

Why FIRST Set

• Hence it is validated
– If the compiler/parser knows about first character of

the string that can be obtained by applying a
production rule

– I can wisely apply the correct production rule to get the
correct syntax tree for the given input string

21

Why FOLLOW Set

• The parser faces one more problem

• Let us consider below grammar to understand this
problem

A -> aBb
B -> c | ε
And suppose the input string is “ab” to parse.

A • As the first character in the input is a, the parser
applies the rule A->aBb

• Now the parser checks for the second character of
the input string which is b, and the Non-Terminal
to derive is B, but the parser can’t get any string
derivable from B that contains b as first character

22

A
/ | \
a B b

Why FOLLOW Set

• But the Grammar does contain a production rule
B -> ε
– if that is applied then B will vanish, and the parser gets

the input “ab”

– But the parser can apply it only when it knows that the
character that follows B is same as the current
character in the input

• In RHS of A -> aBb
– b follows Non-Terminal B, i.e. FOLLOW(B) = {b},

and the current input character read is also b

– Hence the parser applies this rule. And it is able to get
the string “ab” from the given grammar

23

Rules to Compute FIRST Set

• If X is a non-terminal symbol then
– FIRST(X) is the set of terminals that begin the strings

derivable from X

• If X is a non-terminal and have production rule
X-> Ɛ, then add Ɛ to FIRST(X)

• If X->Y1 Y2 Y3….Yn is a production,• If X->Y1 Y2 Y3….Yn is a production,
– FIRST(X) = FIRST(Y1)

– If FIRST(Y1) contains Ɛ then FIRST(X) = {
FIRST(Y1) – Ɛ } U { FIRST(Y2) }

– If FIRST (Yi) contains Ɛ for all i = 1 to n, then add Ɛ
to FIRST(X)

• If x is a terminal, then FIRST(x) = { ‘x’ }
24

Example 1

25

Example 2

26

Example 3

Grammar

S → aBDh

B → cC

C → bC |

First Functions-

First(S) = { a }
First(B) = { c }
First(C) = { b , }
First(D) = { First(E) – } First(F) = C → bC |

D → EF

E → g |

F → f |

27

First(D) = { First(E) – } First(F) =
{ g , f , }

First(E) = { g , }
First(F) = { f , }

Rules to Compute FPLLOW Set

• Compute FOLLOW set for every non-terminal using the
RHS of the production rules of the grammar
– Follow(X) to be the set of terminals that can appear immediately

to the right of Non-Terminal X in some sentential form

– If X is the starting symbol of a grammar, then include $ in the
FOLLOW(X) such as FOLLOW(X) = {$}

– If there is a production A -> α Bβ, then everything in FIRST(β),
except for Ɛ, is placed in FOLLOW(B)except for Ɛ, is placed in FOLLOW(B)

– If there is a production A => α Bβ where FIRST(β) contains Ɛ
(i.e., β => Ɛ), then everything in FOLLOW(β) is in FOLLOW(B)
Such FOLLOW(B) = {First(β)- Ɛ} U FOLLOW(β)

– If there is a production A => α B then include everything in
FOLLOW(A) in the FOLLOW(B) such that FOLLOW(B) =
FOLLOW(A)

28

Example 1

29

Example 2

ƐƐ

30

Example 3

Grammar

S → aBDh

B → cC

C → bC |

Follow Functions-

Follow(S) = { $ }
Follow(B) = { First(D) – }

First(h) = { g , f , h }
Follow(C) = Follow(B) = { g , f , h }

C → bC |

D → EF

E → g |

F → f |

31

Follow(C) = Follow(B) = { g , f , h }
Follow(D) = First(h) = { h }
Follow(E) = { First(F) – }

Follow(D) = { f , h }
Follow(F) = Follow(D) = { h }

• End of Chapter # 5

32

