D

A

Chapter # 5
Parsing Mechanisms

Dr. Shaukat Ali

Department of Computer Science %
\W/

Parser and Parsing

* Parser 1s that phase of compiler which takes
token string as input and with the help of existing
grammar, converts it into the corresponding parse
tree.

— Parser 1s also known as Syntax Analyzer.

« Parsing is a process that construct a syntactic
structure (1.e., parse tree) from the stream of
tokens

— Parsing 1s the process of determining 1f a string of
tokens can be generated by a grammar

N| :

Types of Parser

Bottom-up Parser
Top-down Parser £

Operator
LR parser precedence
parser

Recursive

descent parser

Types of Parser

» There are two types of parsers:
— Top Down Parser (LL Parser).

» Recursive Descent Parser.

 Non-Recursive Predictive Parser

» Predictive Parser. }

— Bottom-Up Parser (LR Parser).)
 Shift Reduce Parser
« Simple LR Parser.
« Canonical LR Parser.

-

LL(1)

LR(1)

 LL(1)means “L for left-to-right scanning of the input and L 1s
for left most derivation and only one non-terminal expanded at

each step.

 LR(1) means “L for left-to-right scanning of the input and R 1s
for right most derivation and only one non-terminal expanded at

ach step.

4

Top-Down Parser

* Top-Down parsing can be viewed as an attempt to
find a left-most derivation for an input string.

* We can say that to construct a parse tree for the
input starting form the root and creating the nodes
of parse tree 1n preorder.

e [t works as under:

— Expand the start symbol of a grammar into the string
(on RHS of the start symbol).

— At each expansion step, the non terminal symbol 1n the
LHS of a particular production is replaced by the RHS
of that production.

— If the substitution 1s chosen correctly at each step, a
left most derivation 1s traced out.

F=0
N| :

Example.

* Consider the following grammar:
E 2> E+E
E 2> E*E
E 2> (E)
E 2> -(E)
E -2 id
Now derive the string - (1d +1d).

Types of Top-Down Parsing.

* There are three types of Top-Down Parsers:
— Recursive Descent Parser.
— Predictive Parser.

— Non-Recursive Predictive Parser.

Recursive Descent Parser.

* In this type of Top-Down Parsing, a non-terminal
of the current derivation step 1s expanded using
the production rule in the given grammar.

 If the expansion does not gives the desired result,
the parser drops the current production and
applies another production corresponding to the
same non-terminal symbol.

* This process 1s repeated until the required result 1s
obtained.

e The process of dropping the previous production

and applying a new production 1s called
BACKTRACKING.

N| ;

Recursive Descent Parser.

BackTracking occurs in Recursive Descent
Parsers

— Grammars that include multiple production for a
single non-terminal and not left factored

Disadvantage:

— The main disadvantage of this technique 1s that it 1s
slow because of backtracking.

— When a grammar with left recursive production is
given, then the parser might get into infinite loop.
Hence, left recursion must be eliminated.

N| ;

Example 1

* Consider the grammar

S — rXd | rZd
X —o0alea
Z — ai

* For an mput string: read

%N/ \ /Y

back-tracking

r /Jq\d

/\

e a
next-production

10

Example 2

* Consider the grammar:
S =2 cAd
A-> ab|a

Now derive the string cad.

S S T
P4 ;’f 3 f; ™
x./ /,'f \\
x;, 4 Kr;-f N,
.-f 3
c A d c A d c A d
K
a b
a

11

Predictive Parsing.

 Itis a special case of Recursive Descent Parser.

* In this parsing method the backtracking is
removed.

— In many cases, by eliminating left recursion and left
factoring (common prefixes) form a grammar, we can
obtain a grammar that can be parsed by a Recursive
Descent Parser that needs no backtracking.

e This type of parsing technique works by
attempting to predict the appropriate production
to expand the non-terminal at the current

derivaiton step, 1n case more than one productions
corresponds to the same non-terminal.

12

Predictive Parsing.

To construct a predictive parser, we must know:

— G@Given the current input symbol a and the non-terminal to be
expanded, which one of the alternatives of production A =2 al |
a2 | a3 | ---- | an 1s the unique alternative that derives a string
beginning with a.

— That 1s, the proper alternative must be detectable by looking at
only the first symbol it derives.

* For example , if we have the productions:
stmt =2 1if expr than stmt else stmt
| while expr than stmt
| begin stmt list end

Then the keywords if, while, begin tell us which
alternative 1s the only one that could possibly succeed 1f
we are to find a statement.

13

Non-Recursive Predictive Parser.

The key problem 1n the predictive parsing 1s that
of determining the production to be applied for a
non-terminal.

The Non-Recursive Predictive Parser 1s the
implementation of Predictive Parser and solves
the problem by implementing an implicit stack
and parsing table.

The Non-Recursive Predictive Parser looks up the
production to be applied 1n a parsing table.

The parsing table can be constructed directly from
certain grammar.

@ 14

Model of a Non-Recursive Predictive Parser \

Stack

X

BEE

Input Buffer

H

+ b

I

Predictive Parsing

Program

Output
> Stream

|

Parsing
Table

15

Model of a Non-Recursive Predictive Parser

Input Buffer:

— The input buffer contains the string to be parsed
followed by $, a symbol used to indicate the end of the
input string.

o Stack:

— The stack contains a sequence of grammar symbols
(terminal and non-terminal) with # or $ indicating the
bottom of the stack.

Parse Table:

— A two dimensional array M[A,a], where A 1s a non-
terminal and a is a terminal or the symbol $

@ 16

Functions of Non-RPP

* Non-Recursive Predictive Parsing process may
include the following functions.

« Considering X, the symbol on top of the stack and
a the current input symbol.

— If X =a=1§, the parser halts and announces successful
completion of parsing.

— POP:
« If X =anotequal to $, the parser pops X off the stack and

advances the input pointer to the next input symbol.
— Apply:
 If X is a non-terminal, then X will be popped from the stack.
 The parser consult M[X,a] of the parsing table M.
Y. (=24

Functions of Non-RPP

 This entry will be either an X-production of the grammar or
an error entry.

o If, for example, M[X,a] = { X = UVW}, the parser replaces
X on top of the stack by WVU (with U on top).

— Rejects:

« If M[A,a] = error, the parser calls an error recovery routine.

— Accepts:

e Ifthe current input is $.i.e. a=3$ and top of the stack is § .i.e.
X =§, then parser will declare the validity of the input string
and give output as the structure of the parser.

18

FIRST and FOLLOW Sets

 The construction of a non-recursive predictive
parser 1s aided by two functions associated with a
grammar G

 These functions, FIRST and FOLLOW, allow us
to fill in the entries of a parsing table for G,
whenever possible

 We need to find FIRST and FOLLOW sets for a
given grammar, so that the parser can properly
- _apply the needed rule at the correct position

@ 19

Why FIRST Set

 If the compiler would have come to know in
advance

— what 1s the “first character of the string produced when
a production rule 1s applied”, and comparing it to the
current character or token 1n the input string it sees

— It can wisely take decision on which production rule to

apply If it knew that after reading character ‘c’ in the input
S o> cAd string and applying S->cAd, next character in the
A -> bc|a Input string 1s "a

It would have ignored the production rule A->bc
And the input (because ‘b’ is the first character of the string
string is “cad". produced by this production rule, not ‘a’)
Directly used the production rule A->a (because ‘a’
the first character of the string produced by this
production rule, and 1s same as the current charagge

of the input string which is also ‘a’).

Why FIRST Set

* Hence 1t 1s validated
— If the compiler/parser knows about first character of
the string that can be obtained by applying a
production rule

— I can wisely apply the correct production rule to get the
correct syntax tree for the given input string

21

Why FOLLOW Set

e The parser faces one more problem

* Let us consider below grammar to understand this

problem
A -> aBb

B ->c | €
And suppose the input string is “ab" to parse.

 As the first character in the input is a, the parser
applies the rule A->aBb

* Now the parser checks for the second character of
the iput string which 1s b, and the Non-Terminal
to derive 1s B, but the parser can’t get any string

derivable from B that contains b as first character

A
/ |\
aBb

22

Why FOLLOW Set

But the Grammar does contain a production rule
B->¢

— 1f that 1s applied then B will vanish, and the parser gets
the input “ab”

— But the parser can apply i1t only when 1t knows that the
character that follows B 1s same as the current
character in the input

In RHS of A -> aBb

— b follows Non-Terminal B, i.e. FOLLOW(B) = {b},
and the current input character read 1s also b

— Hence the parser applies this rule. And it 1s able to get
the string “ab” from the given grammar

A=
@ 23

Rules to Compute FIRST Set

e If X 1s a non-terminal symbol then

— FIRST(X) 1s the set of terminals that begin the strings
derivable from X

e If X 1s a non-terminal and have production rule
X-> &, then add € to FIRST(X)

e If X->Y1Y2Y3....Yn 1s a production,
— FIRST(X) = FIRST(Y1)
— If FIRST(Y'1) contains € then FIRST(X) = {
FIRST(Y1)-€ } U { FIRST(Y2) }
— If FIRST (Y1) contains € for all 1 =1 to n, then add €
to FIRST(X)

If X 1s a terminal, then FIRST(x) = { X’ }
24

Example 1

Production Rules of Grammar

E ey e

i B e

T =2k T

U e S

F - -> (E) | id

FIRST sets

FIRST(E) = FIRST(T) = { (, id }
FIRST(E') = { +, € }

FIRST(T) = FIRST(F) = { (, id }
FIRSTAT) = *. (€ }

FIRST(F) = { (, id }

@ 2

Example 2

Production Rules of Grammar
S -> ACB | Cbb | Ba

-> da | BC

>g| €

> h | E

e TR = R

FIRST sets
FIRST(S)

FIRST(A) U FIRST(B) U FIRST(C)
={d, g, h, b, a}

FIRST(A) = { d } U FIRST(B) = { d, g, h, € }

FIRST(B) = { g, € }

FIRSEAC)Y =L h E }

=

Example 3

Grammar First Functions-

First(S)={a}

>—aBbh o HB) = { e)

B—cl First(C) = {b , €}

C—bCl€ First(D) = { First(E) - € } U First(F)
D — EF {g,f.€}

E—gle First(E)={g, €}
F—>f|€ FirST(F):{f,E}

3)

Rules to Compute FPLLOW Set

e Compute FOLLOW set for every non-terminal using the
RHS of the production rules of the grammar

Follow(X) to be the set of terminals that can appear immediately
to the right of Non-Terminal X in some sentential form

If X is the starting symbol of a grammar, then include $ in the
FOLLOW(X) such as FOLLOW(X) = {$}

If there is a production A -> a Bf, then everything in FIRST(p),
except for &, is placed in FOLLOW(B)

If there 1s a production A => o B} where FIRST([3) contains €
(i.e., B => &), then everything in FOLLOW(p) is in FOLLOW(B)
Such FOLLOW(B) = {First(B)- €} U FOLLOW(f)

If there is a production A => a B then include everything in

FOLLOW(A) in the FOLLOW(B) such that FOLLOW(B) =
FOLLOW(A)

28

Example 1

Production Rules:
F = TE?

E? =>4 T E*|E

T -»F T

T > *E 5 | E

F -» {E) | 3d

FIRST set

FIRST(E) = FIRST(T) = { (, id }
FIRST(E*) = { +, € }

FIRST(T) = FIRST(F) = { (, id }
EIRSTLT?) = 1 *; E }

FIRST(F) = { (, id }

FOLLOW Set
FOLLOW(E) =4{ %,) } // Note ')' is there because of 5th rule
FOLLOW(E*) = FOLLOW(E) = { %,) } // See 1st production rule

FOLLOW(T) = { FIRST(E’) - € } U FOLLOW(E*) = { + , $,) }
A FOLLOW(T?) = FOLLOW(T) = fr% . 71
§ FOLLOW(F) = { FIRST(T?) - € } U FOLLOW(T?) = { *, +, $,) } 29

\ |

Example 2

First(S) = b, d, £}
First(A) = {b, d, &
First(B) = {b, &
First(D) = {d, € }
Follow(S) = {$}

Follow(A) = {a}
Follow(B) = id, a}
Follow(D) = {a}

Example 3

Grammar

S — aBDh
B — cC
C—-DbC|E
D — EF
E—glE
F—-1]|€

49‘

Follow Functions-

Follow(S)={ $ }

Follow(B) = { First(D)-€ } u

Fo
Fo
Fo

First(h)={g,f . h
ow(C) = Follow(B)={g,f ., h
ow(D) = First(h) ={ h}
ow(E) = { First(F) - €} U

Follow(D)={f , h}

Follow(F) = Follow(D) = { h }

31

* End of Chapter # 5

32

